256x^2+81x^2=80^2

Simple and best practice solution for 256x^2+81x^2=80^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 256x^2+81x^2=80^2 equation:



256x^2+81x^2=80^2
We move all terms to the left:
256x^2+81x^2-(80^2)=0
We add all the numbers together, and all the variables
337x^2-6400=0
a = 337; b = 0; c = -6400;
Δ = b2-4ac
Δ = 02-4·337·(-6400)
Δ = 8627200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8627200}=\sqrt{25600*337}=\sqrt{25600}*\sqrt{337}=160\sqrt{337}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160\sqrt{337}}{2*337}=\frac{0-160\sqrt{337}}{674} =-\frac{160\sqrt{337}}{674} =-\frac{80\sqrt{337}}{337} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160\sqrt{337}}{2*337}=\frac{0+160\sqrt{337}}{674} =\frac{160\sqrt{337}}{674} =\frac{80\sqrt{337}}{337} $

See similar equations:

| 4(1-5n)+4=6(1-3n) | | (4+2x)5=2+-8x | | 4/9x-8=12 | | 66=1/3•3.14•9•h | | 4(x-5)+3x=1 | | -7(8b+2)=40-2b | | B+2(b+3)+4b-5=148 | | 7x+2=3x-38 | | M2=6x+10 | | (16x)^2+(9x)^2=80^2 | | 2(3x-5)=6x | | 15w-3(3w+4)=6 | | 4(4n+8)=24+8n | | 29=4x+1-x=10 | | 64+16+x=180 | | 5x+3x+4x=4(x+2) | | 6/7x-8=28 | | 3x+3(x+1)=15 | | 2(-5+5x)+2x=86 | | 5/11x+1/3=2/5-6/11x+2/5 | | 3.25+.55x=2.5+.6x | | 6x-13+2x=2+8x-15 | | 4v-1-7v=7+v | | 5t+6=t | | 15(t-5)+20t=415 | | 4=21+2.50v | | 3/4-1/2+10=1/2(m-2) | | -11(-6-2n)=12(n+9) | | 6a-4(2-3(4a-3)=-17 | | 8t=-39-5t | | 50=5y+15 | | n/3-6=2/3 |

Equations solver categories